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u= A"+ Q)

will have values in the space W,1° (R) for all ¢ . Further differentiability properties

of the functions u (, ¥) and @ (¢) were not studied; hence these functions should be
considered as generalized solutions of the original problem,

8. The case of a completely filled cavity, Inthiscase u=S8, the
equation (5. 6) is dropped and the system (5.5) - (5.7) simplifies considerably; namely,

]
n=eting + 11/ — 0] £ 0, v)de (6.1)
L1}
{
0+ ByA™" = 0o + By A", — {(t—1) Fy (0, 1) dx (6.2)
Q
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Many works devoted to the investigation of the interdependence between the process of
sliding friction and the normal displacement of a friction couple have appeared recent-
K (the basic literature is presented in [13]), However, no questions connected with
ermoelastic ghenomena which can exert essential influence on the friction process in
the presence of constraints limiting the normal displacement of the friction couple were
considered in these works, The character of the thermoelastic processes occurring with
friction is determined by the balance between heat liberation and heat elimination in
the friction zone, and depends, in the long run, on the physical-geometric properties
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of the friction node. In the general case, the effective analytical solution of problems
associated with the description of thermoelastic processes with friction, is of consider-
able difficulty, and it is expedient to examine a model problem with the assumption
of approximating some cases of friction with sufficient accuracy and admitting of an
exact solution,

The following problem is considered below. A body in the form of a plate moves
between two g:ane, arallel, absolutely rigid surfaces at an invariant distance (belon-
g.ilng to two absolutely solid bodies, say); friction occurs between the first surface and

e plate while there is no friction between the second surface and the plate. The first
surface is a heat insulator, and the temperature of the second surface (and the corres-
ponding plate surface) is zero, It is required to determine the stress and temperature
distribution in the plate, Isothermal and adiabatic conditions are not absolute and can
be replaced by other boundary conditions.

The result obtained, the existence of stable and unstable friction modes, is extended
to a broad class of friction couples.

Let us select a coordinate system with origin on the surface of the first solid, and the
X axis perpendicular to the plate and directed into the plate; let us utilize the nota-
tion &, &% a, E, I, v, f, T (x, 1), o (1} for the coefficients of heat conduction, thermal
diffusivity, linear expansion, the elastic modulus, thickness, rate of plate displacement
relative to the first solid, coefficient of friction, temperature, normal stress (acting on
an area parallel to the plate), As is customary in the theory of thermal contact wi

local friction [*%], the thermophysical parameters are assumed constant,

Let us consider two solutions of the problem corresponding to two different conditions
referring to the initial instant

T(z, Q) = T,, a (0) = 0 (T = const)
T(z,0) =0, ¢ (0) = o, (0o = const)

In the first case we have

1 i
T(z, t)=T°SG(z. E, zm—-aaST,'(o. HG(z, 0, t—1)ds ®
0 0

Here G (=, §, ) is the Green's function of the heat conduction problem under the con-
ditions Ty (0, 8) =@ (8}, T (1, 1) = 0.
The Green s function can be represented as

G (=& t)='{7[°t(“T "%)'“’("l%il";g)"
z—§—2 nz_%)_h(u—-z-'*_i—‘;——zi nz—;:)] 2

o (a=i
where 0.(:[1) is the third Jacobi theta function [?] (in [%} the Green's function of the

considered problem is apparently inaccurate),
By using the relationships

e—8

i
c(t)=%§~ST(3, 1) dz, Ty (O, t)=—--l£-c(t)
°

we find from (1) and (2)

xm-gm—«)zmawm 3
]
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Here
4 Z°° — )" 2841

n=0
8 < 2n 4 1p
q(")——_x'F"%(zT-‘;-T)""p(_‘*r_a")

as 1 1 vakl
‘I’=F,‘l, 2(‘():76(“—’1), “’=’_A.—" v=aT.

The last four nondimensional quantities are connected to the péclet and Fourier

criteria by simple relationships.
The Volterra integral equation (3) will be an equation of convolution type, and its

solution 2 (%) can be obtained by the customary method, by using a Fourier transform,
say [?®). Let us represent the solution in two forms

fc-4-00
-1 !' Q (w) .
z = _
(v Vin . =V @ exp (— itw) dw )

E(f)=q(t)+§q(s)m(f—s)d: )

fc+o0
Mw)=—0ntl__

1 .
"=y ) MEer i 1= VK@

The functions denoted by the same upper and lower case latin letters will be recip-
rocal Fourier transforms. Utilizing the expression for k ({) we obtain

1 1 iw -1
M) =—35 [T —whV —in +‘]

The branch ¥ = ww is selected so that arg w = 0 will correspond to arg ¥ — &w =
= — 1, The function M (w) will be meromorphic in the whole plane, with poles
on the imaginary axis, As ®@ — oo the zeros of the denominator of the function M ()

are disposed at the points
Oy =—40m({ £2V20 )1, w'=w" - (m=1,2...)
For J* the following estimate holds

Jt=a(l+psxch Vo), 0<p<,, © — oo

For o — 0 the zeros are located at the points
n 4 (—1mH ,
Orn” = — [T(z"'+’)’+; ‘zm—:cr“’] ¢

TWo poin® w,,* exist between each two adjacent points w,, ; a5 @ varies between
o and 0, the zeros move from each point e, (which will be first order branch
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points for @ = oo ) to the adjacent two points wy,°. For w =0 and w = 2 the zero
w* will be at the points — Y/ and Q , respectively,

Table 1,

T(x, 0)c=Ts, E(0)=0 T (x, 0)=0, E(0)= 5,

“
E (1) T, <) B (%) 1 T O v

—0 Z@se T(0, v)* (1+:0) 2o ywta™1Z
2 /%o *sTo /s Zov M/sa 180T
—00 xoeﬂf 2Tocut zoe(n? 2“‘1206“‘

Ao . 40 n 4
$Z(v)=2"5 sin g exp |— T—-—;m)r

**T0O 1)= -;;6,- Tow?c? oxp (——’; 1')

The asymptotic representation of 2 (t), T — oo is determined by the residue at the
point w*; the actual determination of & (v) is performed by using the relationships (4),
(5) (results of computations for values 0.2, oo of the parameter @ are presented in

Table 1; for intermediate values of ® the integral in the right side of (5) can be esti-
mated by the method in [¥]). We find the asymptotic representation form — 2, ¥ — oo
from (4)

Z(x) ~ % Aoexp (Y (@ — 2) ]

It hence follows that the stability of the considered friction process is determined by
the condition o <2, instability occurs for @ >> 2 ; the critical value of the veloci-
ty corresponding to the passage from the stable to the unstable friction mode is deter-~
mined by the relationship

2
Y = JaEI )

In the second case, when the initial temperature of the plate is zero, and there are
initial stesses, the integral equation (3) becomes

2(t)=Sk(r—s)E(s)ds+d(t), d(t)=2.Sk(s)ds. Zo=Z (0)
1] 0

and the solution of this equation can be conducted by the same means as in the first
case, For @-» 2, v ~» co we have

2 (5) ~ 28 g to0 [% (@ —2) €] — 1)

Hence, for o = 2 we find
Z (1) ~ 18/5 Zov
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Therefore, stability in this case is determined by the condition w «{3;

The temperature in the friction zone is determined by using (1), here not the asymp~
totic but the exact value of & (¥) corresponding to all poles of M () should be used.

We present the results of the calculations for ¥ — oo in Tabie 1.

BIBLIOGRAPHY

1., Andreevskii, V.M., Measurement of friction during vibrations. Izv. VUZ,
Fizika, No,6 (73), 1968,

2. Grigorova, S.R, and Tolstoi, D,M,, On resonance drop of friction,
Dokl, Akad.-Nauk SSSR, Vol. 167, No, 3, 1966.

3. Kragel'skii, I.V.,, Fricdon and Wear, 2nd ed., Moscow, Mashinostroenie,
1968,

4, Korovchinskii, M, V., Local thermal contact with quasistationary heat
liberation in the friction process, Sb, "Theory of Friction and Wear”, Moscow,
"Nauka", 1965.

5, Korovchinskii, M, V., Principles of the theory of thermal contact with
local friction, Sb. "New Material in the Theory of Friction”, Moscow, "Nauka"
1968,

6. Chichinadze, A, V., Analysis and Investigation of External Fricton with
Deceleration, Moscow, "Nauka", 1967.

7. Whittaker, E, T, and Watson, G.N,, Modern Analysis, Vol.2, 2nd
ed,, Moscow, Fizmatgiz, 1963.

8. Babich, V.M., Kapilevich, M.B., Mikhlin, S.G,, Natanson,
G.N., Riz, P. M., Slobodetskii, L. N, and Smirnov, M, M.
Linear Equations of Mathematical Physics. Moscow, "Nauka”, 1964,

9, Titchmarsh, E,, Intoduction to the Theory of Fourier Integrals, Moscow=
Leningrad, Gostekhizdat, 1948,

10, Slonovskii, N,V,, Application of a method of constructing inequalities to
Bessel functions, Izv. VUg., Matematika, No,4, 1961,

Translated by M, D, F,

ON THE STEADY MOTIONS OF A GYROSTAT SATELLITE

PMM Vol, 33, No, 1, 1969, pp. 127-131

S.la., STEPANOV
{Moscow)
(Received February 6, 1968)

Two families of steady motions of a gyrostat satellite in a central Newtonian force
field are considered, The plane of the (circular) orbit of the center of mass of the
satellite is biased relative to the atwacting center. Sufficient conditions for stability
are derived.

These motions complement the numerous already familiar [*] steady motiors of a
gyrostat satellite with the center of the circular orbit coincident with J;e attractin
center, As in the case of the latter motions, the stability conditions in our case differ
from those obtained under the restricted formulation of the problem {*} by quantities
on the order of #/ R? relative to the principal terms ({. is the characteristic dimen-
sion of the satellite, R is the distance from the atwacting center), The orbital plane
bias is of the order of p/ R, These quantities are very small indeed when one is deal-
ing with real artificial earth satellites.

e present study s carried out by the Routh method with the aid of some result
obtained by Rumiansev [*].



