
The problem of small motions of a My 117 

u = A-““(q + L) 

will have values in the space w,*O (a) for all t . Further differentiability properties 

of the functions u (t, r’) and Q) (t) were not studied; hence these functions should be 
considered as generalized solutions of the original problem. 

6. The case of 8 completely filled crvlty, In rhiscase U = 8, the 
equation (5.6) is dropped and the system (5.5) - (5.7) simplifies considerably; namely,, 

Co + f3,AJ’“q = to, + &A--“‘qo. - 5 (1-3) F&o, r)dr (6.2) 
0 
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limiting the normal displacement of the friction couple were 
considered in these works. The character of the thermoelastic processes occurring with 
friction is determined b the balance between heat liberation and heat elimination in 
the friction zone, and d epends , in the long run. on the physical-geome~ic properties 
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of the friction node 
associated with the 

In the general case, the effective analytical solution of problems 
‘description of thermoelastic processes with friction, is of consider- 

able difficulty, and it is expedient to examine a model problem with the assumption 
of approximating some cases of friction with sufficient accuracy and admitting of an 
exact solution. 

The following problem is considered below. A body in the form of a plate moves 
absolutely ri id surfaces at an invariant distance (belon- 

solid bodies, say); rrction occurs between the first surface and fg. 
no friction between the second surface and the plate. The first 

and the temperature of the second surface (and the cones- 
ponding plate surface) is zero. It is required to determine the stress and temperature 
distribution in the plate. Isothermal and adiabatic conditions are not absolute and can 
be replaced by other boundary conditions. 

The result obtained. the existence of stable and unstable friction modes, is extended 
to a broad class of friction couples. 

Let us select a coordinate system with origin on the surface of the first solid, and the 
x axis ~rpendi~ui~ to the plate and directed into the plate; let us utilize the nota- 

tion I, ~',a, E, i, u, f, T (x, 1). u (t) for the coefficients of heat conduction, thermal 
diffusivity, linear expansion, the elastic modulus, thickness, rate of plate displacement 
relative to the first solid, coefficient of friction, temperature, normal stress (actin on 
an area parallel to the plate). As is customary in the theory of thermal contact wi 4 
local friction I”I, the thermophysical arameters are assumed constant. 

Let us consider two solutions of the pro !I lem corresponding to two different conditions 
referring to the initial instant 

T (t, 0) = To, o (0) = 0 (T, = const) 

T(k, 0) =i 0, s(0) = a, (a@ = const) 

In the first case we have 

Here G (L, E, t) is the Green’s function of the heat conduction problem under the con- 
ditions T,'(O, t) = q~ (r), T(I, 8) = 0. 

The Green s function can be represented as 

where b,(& is the third Jacobi theta function [?I (in [sj the Green’s function of the 
considered problem is a parently inaccurate). 

By using the relations g. ips 

we find from (1) and (2) 
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Here 

The last four nondimensional quantities are connected to the P&let and Fourier 
criteria by simple relationships. 

The Volterrs integral equation (3) will be an equation of convolution type, and its 
solution x (7) can be obtained by the customary method, by using a Fourier transform, 
say 1’1. Let us represent the solution in two forms 

(4) 

(5) 

-- 
m(C) - vi5 fc_-a, s 

M (to) exp (- ipw) dw, Ww)=i 
K (w) 

- )/me(w) 

The functions denoted by the same upper and lower case latin letters will be recip- 
rocal Fourier transforms. Utilizing the expression for k (Q we obtain 

The branch )/-x is selected so that arg 10 - 0 will correspond to ag )/x = 
= - I/,n. The function M (co) will be meromorphic in the whole plane, with poles 
on the imaginary axis. As 0 -, 00 the zeros of the denominator of the function M (UP) 
are disposed at the points 

tch, = - 4ngma(i * 2)/Tar-r) 1, w+ - lJ+ . (m==i,2,...) 

For J+ the following estimate holds 

f+=@(i+@rGj, O<P<% Q)+oa 

For as 4 0 the zeros are located at the points 

Two points (o,,,* exist between each two adjacent points ‘51; as o varies between 
00 and 0 , the zeros move from each point ti (which will be first order branch 
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points for o - 00 ) to the adjacent two points s“. For 0 = 0 and w = 2 the zero 
w+ will be at the points - I/#1 and 0 , respectively. 

The asymptotic representation of Z (T), % -, 00 is determined by the residue at the 
point 16; the actual determination of 2 (I) is performed by using the relationships (4), 
(5) (results of computations for values 0.2, 00 of the parameter o are presented in 
Table 1; for intermediate values of 0 the integral in the right side of (5) can be esti- 
mated by the method in [to]). 
from (4) 

We find the asymptotic representation for o -+ 2;~ -, 00 

z (1) m ‘/b x0 exp I’/, (0 - 2) f 1 

It hence follows that the stability of the considered friction process is determined by 
the condition o 6 2, instability occurs for 0 > 2 ; the critical value of the veloci- 
ty corresponding to the passage from the stable to the unstable friction mode is deter- 
mined by the relationship 

In the second case, when the initial temperature of the plate is zero, and there are 
initial stresses, the integral equation (3) becomes 

I: (T) = i k (T - s) E (s) da + d(~). d (T) = Z. 5 k (a) da, Zo=E (0) 

0 0 

and the solution of this equation can be conducted by the same means as in the first 
case. For o--t 2, x--t 00 we have 

x (T) - 24 a7 NP I% (0 - 2) T] - 1) 

Hence, for o -_ 2 we find 
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Therefore, stability in this case is determined by the condition as <Pi 
The temperature in the friction zone is determined by using (l), here not t&e, asymp- 

totic but the exact value of 2 h) corresponding to all poles of J# (ip) should be Bed. 
We present the results of the calculations for z --t op in Table 1. 
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Two families of steady motions of a gyrostat satellite in a central Newto~an force 
field are considered. The plane of the (circular) orbit of the center of mass of the 
satellite is biased relative to the attracting center. 
are derived. 

Sufficient conditions for stability 

These motions complement the numerous alread familiar [*I stead motiotlp of a 
gyrostat satellite with the center of the circular or I!* it coincident with 

x 9 
e attractin 

center. As in the case of the latter motions, the stability conditions in our case di fer 
from those obtained under the restricted formulation of the problem (‘I by quantities 
on the order of P / 1?’ relative to the principal terms (I. is the characteristic dimen- 
sion of the satellite, R is the distance from the attracting center). The orbital plane 
bias is of the order of F / R. These quantities are very small indeed when one is deal- 
in with real artificial earth satellites. 

!I% e present study fs car&d out by the Routi method with the aid of some results 
obtained by Rumianoev [*I. 


